All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cooperative Model of Evolutionary Algorithms Applied to CEC 2019 Single Objective Numerical Optimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA2001ZZZ" target="_blank" >RIV/61988987:17310/19:A2001ZZZ - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CEC.2019.8790317" target="_blank" >http://dx.doi.org/10.1109/CEC.2019.8790317</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC.2019.8790317" target="_blank" >10.1109/CEC.2019.8790317</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cooperative Model of Evolutionary Algorithms Applied to CEC 2019 Single Objective Numerical Optimization

  • Original language description

    A cooperative model of well-known evolutionaryalgorithms is proposed and tested on CEC 2019 benchmark suite. The four adaptive algorithms are chosen for this model, namely Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) and three variants of adaptive Differential Evolution. Although the three algorithms use constant population size, the proposed model employs an efficient linear population size reduction mechanism. The provided results show that theCooperative Model of Evolutionary Algorithms (CMEAL) is able to solve seven out of ten optimization problems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2019 IEEE Congress on Evolutionary Computation (CEC)

  • ISBN

    978-1-7281-2153-6

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    358-363

  • Publisher name

    IEEE

  • Place of publication

    Piscataway, NJ, USA

  • Event location

    New Zealand

  • Event date

    Jun 10, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000502087100049