All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Eigen Crossover in Cooperative Model of Evolutionary Algorithms Applied to CEC 2022 Single Objective Numerical Optimisation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302GV8" target="_blank" >RIV/61988987:17310/22:A2302GV8 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9870433" target="_blank" >https://ieeexplore.ieee.org/document/9870433</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC55065.2022.9870433" target="_blank" >10.1109/CEC55065.2022.9870433</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Eigen Crossover in Cooperative Model of Evolutionary Algorithms Applied to CEC 2022 Single Objective Numerical Optimisation

  • Original language description

    In this paper, a cooperative model of four well-performing evolutionary algorithms enhanced by Eigen crossover is proposed and applied to a set of problems CEC 2022. The four adaptive algorithms employed in this model are - Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES), Differential Evolution with Covariance Matrix Learning and Bimodal Distribution Parameter Setting (CoBiDE), an adaptive variant of jSO, and Differential Evolution With an Individual-Dependent Mechanism (IDE). For the higher efficiency of the cooperative model, a linear population-size reduction mechanism is employed. The model was introduced for CEC 2019. Here, Eigen crossover is applied for each cooperating algorithm. The provided results show that the proposed model of four Evolutionary Algorithms with Eigen crossover (EA4eig) is able to solve ten out of 24 optimisation problems. Moreover, comparing EA4eig with four state-of-the-art variants of adaptive Differential Evolution illustrates the superiority of the newly designed optimiser.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 IEEE Congress on Evolutionary Computation (CEC)

  • ISBN

    978-1-6654-6708-7

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    1-8

  • Publisher name

    IEEE

  • Place of publication

    Piscataway, NJ, USA

  • Event location

    Padua, Italy

  • Event date

    Jul 18, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000859282000214