Commutative post-Lie algebra structures on Kac-Moody algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA20021YT" target="_blank" >RIV/61988987:17310/19:A20021YT - isvavai.cz</a>
Result on the web
<a href="https://www.tandfonline.com/doi/full/10.1080/00927872.2019.1612426" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/00927872.2019.1612426</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00927872.2019.1612426" target="_blank" >10.1080/00927872.2019.1612426</a>
Alternative languages
Result language
angličtina
Original language name
Commutative post-Lie algebra structures on Kac-Moody algebras
Original language description
We determine commutative post-Lie algebra structures on some infinite-dimensional Lie algebras. We show that all commutative post-Lie algebra structures on loop algebras are trivial. This extends the results for finite-dimensional perfect Lie algebras. Furthermore we show that all commutative post-Lie algebra structures on affine Kac–Moody Lie algebras are “almost trivial”
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commuications in Algebra
ISSN
0092-7872
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
5218-5226
UT code for WoS article
000469620000001
EID of the result in the Scopus database
2-s2.0-85066834383