Solvable Lie Algebras with Borel Nilradicals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00190113" target="_blank" >RIV/68407700:21340/12:00190113 - isvavai.cz</a>
Result on the web
<a href="http://stacks.iop.org/1751-8121/45/095202" target="_blank" >http://stacks.iop.org/1751-8121/45/095202</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/45/9/095202" target="_blank" >10.1088/1751-8113/45/9/095202</a>
Alternative languages
Result language
angličtina
Original language name
Solvable Lie Algebras with Borel Nilradicals
Original language description
This paper is part of a research program the aim of which is to find all indecomposable solvable extensions of a given class of nilpotent Lie algebras. Specifically in this paper, we consider a nilpotent Lie algebra n that is isomorphic to the nilradicalof the Borel subalgebra of a complex simple Lie algebra or of its split real form. We treat all the classical and exceptional simple Lie algebras in a uniform manner. We identify the nilpotent Lie algebra n as the one that consists of all positive rootspaces. We present general structural properties of all solvable extensions of n. In particular, we study the extension by one non-nilpotent element and by the maximal number of such elements. We show that the extension of maximal dimension is always unique and isomorphic to the Borel subalgebra of the corresponding simple Lie algebra.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
9
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
—
UT code for WoS article
000300777100007
EID of the result in the Scopus database
—