Classification of Solvable Lie Algebras with a Given Nilradical by Means of Solvable Extensions of its Subalgebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F10%3A00163036" target="_blank" >RIV/68407700:21340/10:00163036 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Classification of Solvable Lie Algebras with a Given Nilradical by Means of Solvable Extensions of its Subalgebras
Original language description
We construct all solvable Lie algebras with a specific n-dimensional nilradical n_n,3 which contains the previously studied filiform (n - 2)-dimensional nilpotent algebra n_n-2,1 as a subalgebra but not as an ideal. Rather surprisingly it turns out thatthe classification of such solvable algebras can be deduced from the classification of solvable algebras with the nilradical n_n-2,1. Also the sets of invariants of coadjoint representation of n_n,3 and its solvable extensions are deduced from this reduction.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC527" target="_blank" >LC527: Center for Particle Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
432
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
—
UT code for WoS article
000275012800015
EID of the result in the Scopus database
—