On the zero-multiplicity of a fifth-order linear recurrence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA20023PC" target="_blank" >RIV/61988987:17310/19:A20023PC - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/abs/10.1142/S1793042119500301" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S1793042119500301</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1793042119500301" target="_blank" >10.1142/S1793042119500301</a>
Alternative languages
Result language
angličtina
Original language name
On the zero-multiplicity of a fifth-order linear recurrence
Original language description
We consider a family of linear recurrence sequences T-(k) := {T-n((k))}(n) of order k whose first k terms are 0, 1, ..., 1 and each term afterwards is the sum of the preceding k terms. In this paper, we study the zero-multiplicity on T-(k) when the indices are extended to all integers. In particular, we give a upper bound (dependent on k) for the largest positive integer n such that T--n((k)) = 0 and show that T-(5) has zero-multiplicity unitary when the indices are extended to all the integers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INT J NUMBER THEORY
ISSN
1793-0421
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
3
Country of publishing house
SG - SINGAPORE
Number of pages
16
Pages from-to
585-595
UT code for WoS article
000461984700008
EID of the result in the Scopus database
2-s2.0-85056869094