On some combinations of k-nacci numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F16%3A50004642" target="_blank" >RIV/62690094:18470/16:50004642 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0960077916300194" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0960077916300194</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2016.01.028" target="_blank" >10.1016/j.chaos.2016.01.028</a>
Alternative languages
Result language
angličtina
Original language name
On some combinations of k-nacci numbers
Original language description
For k }=2, the k -generalized Fibonacci sequence (F^(k )_n)_ n is defined by the initial values 0 , 0 , . . . , 0 , 1 ( k terms) and such that each term afterwards is the sum of the k preceding terms. In this paper, we shall study for which x, k and t the expression x^t F^(k )_{n + t} + ...+ xF^(k)_{n +1} + F^(k)_n belongs to (F^(k)_m)_m for infinitely many integers n . This work generalizes [13, Theorem 2] which is related to the case t = 1.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chaos solitons and fractals
ISSN
0960-0779
e-ISSN
—
Volume of the periodical
85
Issue of the periodical within the volume
duben
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
3
Pages from-to
135-137
UT code for WoS article
000371921500015
EID of the result in the Scopus database
2-s2.0-84958986310