All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Terms of generalized Fibonacci sequences that are powers of their orders

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F16%3A50004687" target="_blank" >RIV/62690094:18470/16:50004687 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10986-016-9315-2" target="_blank" >http://dx.doi.org/10.1007/s10986-016-9315-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10986-016-9315-2" target="_blank" >10.1007/s10986-016-9315-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Terms of generalized Fibonacci sequences that are powers of their orders

  • Original language description

    Let (Fn)n}=0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n}=0, where F0 = 0 and F1 = 1. For k >1, the k-generalized Fibonacci sequence (F(k) n )n is defined by the initial values 0, 0, . . . , 0, 1 (k terms) so that each term afterward is the sum of the k preceding terms. In this paper, we prove that the only solution of the Diophantine equation F(k) m = kt with t > 1 and m > k + 1 }= 4 is F_9^(3) = 3^4.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lithuanian mathematical journal

  • ISSN

    0363-1672

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    30

  • Pages from-to

    219-228

  • UT code for WoS article

    000376644700005

  • EID of the result in the Scopus database