Recurrence relations for polynomials obtained by arithmetic functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA20023VU" target="_blank" >RIV/61988987:17310/19:A20023VU - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/abs/10.1142/S1793042119500726" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S1793042119500726</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1793042119500726" target="_blank" >10.1142/S1793042119500726</a>
Alternative languages
Result language
angličtina
Original language name
Recurrence relations for polynomials obtained by arithmetic functions
Original language description
Families of polynomials associated to arithmetic functions g(n) are studied. The case g(n) = sigma(n), the divisor sum, dictates the non-vanishing of the Fourier coefficients of powers of the Dedekind eta function. The polynomials P-n(g)(X) are defined by n-term recurrence relations. For the case that g(x) is a polynomial of degree d, we prove that at most a d + 2 term recurrence relation is needed. For the special case g(x) = x, we obtain explicit formulas and results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INTERNATIONAL JOURNAL OF NUMBER THEORY
ISSN
1793-0421
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
6
Country of publishing house
SG - SINGAPORE
Number of pages
13
Pages from-to
1291-1303
UT code for WoS article
000476732000012
EID of the result in the Scopus database
2-s2.0-85062229049