All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Primitive root bias for twin primes II: Schinzel-type theorems for totient quotients and the sum-of-divisors function

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA210248O" target="_blank" >RIV/61988987:17310/20:A210248O - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0022314X19302835" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022314X19302835</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jnt.2019.08.003" target="_blank" >10.1016/j.jnt.2019.08.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Primitive root bias for twin primes II: Schinzel-type theorems for totient quotients and the sum-of-divisors function

  • Original language description

    Garcia, Kahoro, and Luca showed that the Bateman-Horn conjecture implies phi(p - 1) >= phi(p+ 1) for a majority of twin-primes pairs p, p + 2 and that the reverse inequality holds for a small positive proportion of the twin primes. That is, p tends to have more primitive roots than does p + 2. We prove that Dickson's conjecture, which is much weaker than Bateman-Horn, implies that the quotients phi(p+1)/phi(p-1), as p, p + 2 range over the twin primes, are dense in the positive reals. We also establish several Schinzel-type theorems, some of them unconditional about the behavior of phi(p+1)/phi(p) and sigma(p+1)/sigma(p), in which sigma denotes the sum-of-divisors function.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    J NUMBER THEORY

  • ISSN

    0022-314X

  • e-ISSN

  • Volume of the periodical

    208

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    400-417

  • UT code for WoS article

    000499759700019

  • EID of the result in the Scopus database

    2-s2.0-85072822678