Hydrogeomorphic Impacts of Floods in a First-Order Catchment: Integrated Approach Based on Dendrogeomorphic Palaeostage Indicators, 2D Hydraulic Modelling and Sedimentological Parameters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA210254Z" target="_blank" >RIV/61988987:17310/20:A210254Z - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-4441/12/1/212" target="_blank" >https://www.mdpi.com/2073-4441/12/1/212</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/w12010212" target="_blank" >10.3390/w12010212</a>
Alternative languages
Result language
angličtina
Original language name
Hydrogeomorphic Impacts of Floods in a First-Order Catchment: Integrated Approach Based on Dendrogeomorphic Palaeostage Indicators, 2D Hydraulic Modelling and Sedimentological Parameters
Original language description
Floods represent frequent hazards in both low- and first-order catchments; however, to date, the investigation of peak flow discharges in the latter catchments has been omitted due to the absence of gauging stations. The quantification of flood parameters in a first-order catchment (1.8 km2) was realised in the moderate relief of NE Czechia, where the last flash flood event in 2014 caused considerable damage to the infrastructure. We used an integrated approach that included the dendrogeomorphic reconstruction of past flood activity, hydraulic modelling of the 2014 flash flood parameters using a two-dimensional IBER model, and evaluation of the channel stability using sedimentological parameters. Based on 115 flood scars, we identified 13 flood events during the period of 1955 to 2018, with the strongest signals recorded in 2014, 2009 and 1977. The modelled peak flow discharge of the last 2014 flood was equal to 4.5 m3·s−1 (RMSE = 0.32 m) using 26 scars as palaeostage indicators. The excess critical unit stream power was observed at only 24.2% of the reaches, representing predominantly bedrock and fine sediments. Despite local damage during the last flood, our results suggest relatively stable geomorphic conditions and gradual development of stream channels under discharges similar to that in 2014.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Water
ISSN
2073-4441
e-ISSN
2073-4441
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
—
UT code for WoS article
000519847200212
EID of the result in the Scopus database
2-s2.0-85079495229