Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA21025D1" target="_blank" >RIV/61988987:17310/20:A21025D1 - isvavai.cz</a>
Alternative codes found
RIV/60077344:_____/20:00538237 RIV/60076658:12310/20:43901856
Result on the web
<a href="https://febs.onlinelibrary.wiley.com/doi/epdf/10.1111/febs.15083" target="_blank" >https://febs.onlinelibrary.wiley.com/doi/epdf/10.1111/febs.15083</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/febs.15083" target="_blank" >10.1111/febs.15083</a>
Alternative languages
Result language
angličtina
Original language name
Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei
Original language description
Catalase is a widespread heme-containing enzyme, which converts hydrogen peroxide (H2O2) to water and molecular oxygen, thereby protecting cells from the toxic effects of H2O2. Trypanosoma brucei is an aerobic protist, which conspicuously lacks this potent enzyme, present in virtually all organisms exposed to oxidative stress. To uncover the reasons for its absence in T. brucei, we overexpressed different catalases in procyclic and bloodstream stages of the parasite. The heterologous enzymes originated from the related insect-confined trypanosomatid Crithidia fasciculata and the human. While the trypanosomatid enzyme (cCAT) operates at low temperatures, its human homolog (hCAT) is adapted to the warm-blooded environment. Despite the presence of peroxisomal targeting signal in hCAT, both human and C. fasciculata catalases localized to the cytosol of T. brucei. Even though cCAT was efficiently expressed in both life cycle stages, the enzyme was active in the procyclic stage, increasing cell's resistance to the H2O2 stress, yet its activity was suppressed in the cultured bloodstream stage. Surprisingly, following the expression of hCAT, the ability to establish the T. brucei infection in the tsetse fly midgut was compromised. In the mouse model, hCAT attenuated parasitemia and, consequently, increased the host's survival. Hence, we suggest that the activity of catalase in T. brucei is beneficial in vitro, yet it becomes detrimental for parasite's proliferation in both invertebrate and vertebrate hosts, leading to an inability to carry this, otherwise omnipresent, enzyme.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10600 - Biological sciences
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FEBS JOURNAL
ISSN
1742-464X
e-ISSN
—
Volume of the periodical
287
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
964-977
UT code for WoS article
000493058000001
EID of the result in the Scopus database
—