All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Integral formulas of the Hilbert, Poincaré-Bertrand, Schwarz and Poisson type for the $beta$-analytic function theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA210261T" target="_blank" >RIV/61988987:17310/20:A210261T - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0022247X20306557?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0022247X20306557?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2020.124493" target="_blank" >10.1016/j.jmaa.2020.124493</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Integral formulas of the Hilbert, Poincaré-Bertrand, Schwarz and Poisson type for the $beta$-analytic function theory

  • Original language description

    In the present work we obtain some analogues of the Hilbert formulas on the unit circle and on the upper half-plane for the theory of solutions of a special case of the Beltrami equation in $mathbb C$ to be referred as $beta$-analytic functions. Furthermore, a Poincaré-Bertrand formula related to the $beta$-Cauchy singular integral over a closed Jordan curve is derived and it is used to derive the corresponding Schwarz and Poisson formulas.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    J MATH ANAL APPL

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    492

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    000567811700002

  • EID of the result in the Scopus database