Integral formulas of the Hilbert, Poincaré-Bertrand, Schwarz and Poisson type for the $beta$-analytic function theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA210261T" target="_blank" >RIV/61988987:17310/20:A210261T - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0022247X20306557?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0022247X20306557?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2020.124493" target="_blank" >10.1016/j.jmaa.2020.124493</a>
Alternative languages
Result language
angličtina
Original language name
Integral formulas of the Hilbert, Poincaré-Bertrand, Schwarz and Poisson type for the $beta$-analytic function theory
Original language description
In the present work we obtain some analogues of the Hilbert formulas on the unit circle and on the upper half-plane for the theory of solutions of a special case of the Beltrami equation in $mathbb C$ to be referred as $beta$-analytic functions. Furthermore, a Poincaré-Bertrand formula related to the $beta$-Cauchy singular integral over a closed Jordan curve is derived and it is used to derive the corresponding Schwarz and Poisson formulas.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J MATH ANAL APPL
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
492
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
1-17
UT code for WoS article
000567811700002
EID of the result in the Scopus database
—