On a Theorem of A. A. Markoff
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202BU3" target="_blank" >RIV/61988987:17310/21:A2202BU3 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00025-021-01501-7" target="_blank" >https://link.springer.com/article/10.1007/s00025-021-01501-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-021-01501-7" target="_blank" >10.1007/s00025-021-01501-7</a>
Alternative languages
Result language
angličtina
Original language name
On a Theorem of A. A. Markoff
Original language description
To each Lagrange number $L$ we associate the function $L(x)=frac L2(1+sqrt{1+frac 4{L^2x^2}})$ and prove that the sequence of functions $L(x)$ have better approximation properties then the sequence of the Lagrange numbers $L$ in the Markoff spectrum.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Results in Mathematics
ISSN
1422-6383
e-ISSN
1420-9012
Volume of the periodical
76
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
192
UT code for WoS article
000690944700002
EID of the result in the Scopus database
2-s2.0-85113684404