All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Volterra-Prabhakar function of distributed order and some applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402L46" target="_blank" >RIV/61988987:17310/23:A2402L46 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0377042723002509" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042723002509</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2023.115306" target="_blank" >10.1016/j.cam.2023.115306</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Volterra-Prabhakar function of distributed order and some applications

  • Original language description

    The paper studies the exact solution of two kinds of generalized Fokker-Planck equa-tions in which the integral kernels are given either by the distributed order function k_1(t) = integral 0^1 t-mu/Gamma(1 - mu)dmu or the distributed order Prabhakar function k_2(alpha, gamma; lambda; t) = integral 0^1 e-gamma alpha,1-mu(lambda; t) dmu, where the Prabhakar function is denoted as e-gamma alpha,1-mu(lambda; t). Both of these integral kernels can be called the fading memory functions and are the Stieltjes functions. It is also shown that their Stieltjes character is enough to ensure the non -negativity of the mean square values and higher even moments. The odd moments vanish. Thus, the solution of generalized Fokker-Planck equations can be called the probability density functions. We introduce also the Volterra-Prabhakar function and its generalization which are involved in the definition of k_2(alpha, gamma; lambda; t) and generated by it the probability density function p_2(x, t).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    J COMPUT APPL MATH

  • ISSN

    0377-0427

  • e-ISSN

    1879-1778

  • Volume of the periodical

  • Issue of the periodical within the volume

    433

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    1-21

  • UT code for WoS article

    001002012400001

  • EID of the result in the Scopus database

    2-s2.0-85159305149