Lebesgue measure and Hausdorff dimension of special sets of real numbers from (0,1)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F12%3AA130107N" target="_blank" >RIV/61988987:17610/12:A130107N - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Lebesgue measure and Hausdorff dimension of special sets of real numbers from (0,1)
Original language description
We give a result concerning the Hausdorff dimension and estimation of the Lebesgue measure for the sets of continued fractions of the type $a=[a_1,a_2,ldots]$ where $a_n$ belongs to a set $S_nsubset mathbb N$ for every $ninmathbb N$. The upper boundfor the Hausdorff dimension of the set of numbers with continued fractional expansions which fulfill some properties of asymptotic densities is included.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RAMANUJAN J
ISSN
1382-4090
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
15-23
UT code for WoS article
—
EID of the result in the Scopus database
—