Arithmetics of Extensional Fuzzy Numbers -- Part II: Algebraic framework
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F12%3AA13015NH" target="_blank" >RIV/61988987:17610/12:A13015NH - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Arithmetics of Extensional Fuzzy Numbers -- Part II: Algebraic framework
Original language description
In the first part of this contribution, we proposed extensional fuzzy numbers and a working arithmetic for them that may be abstracted to so-called many identities algebras (MI-algebras, for short). In this second part, we show that the proposed MI-algebras give a framework not only for the arithmetic of extensional fuzzy numbers, but also for other arithmetics of fuzzy numbers and even more general sets of real vectors used in mathematical morphology. This entitles us to develop a theory of MI-algebrasto study general properties of structures for which the standard algebras are not appropriate. Some of the basic concepts and properties are presented here.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. of FUZZ-IEEE 2012
ISBN
978-1-4673-1506-7
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1525-1532
Publisher name
IEEE
Place of publication
—
Event location
Brisbane
Event date
Jan 1, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000309188200212