Trigonometric Fm-transform and its approximative properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801N8U" target="_blank" >RIV/61988987:17610/17:A1801N8U - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00500-017-2637-0" target="_blank" >https://link.springer.com/article/10.1007/s00500-017-2637-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-017-2637-0" target="_blank" >10.1007/s00500-017-2637-0</a>
Alternative languages
Result language
angličtina
Original language name
Trigonometric Fm-transform and its approximative properties
Original language description
The paper is devoted to generalizing the F-transform with constant components to the trigonometric Fm-transform (or tFm-transform for short ) where tFm-transform components are trigonometric polynomials up to m degree, m ≥ 0. The involving basic functions for tFm-transform are sinusoidal shaped functions which are smooth functions. Applying theGram-Schmidt procedure in order to achieving an orthogonal system, leads us to simple calculations of trigonometric basis functions and we obtain an explicit representation for them for arbitrary m. The approximation and convergence properties of the direct and inverse tFm-transforms are discussed and the applicability of tFm-transforms are illustrated by some examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SOFT COMPUT
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
13
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
3567-3577
UT code for WoS article
000403472700009
EID of the result in the Scopus database
—