Trigonometric recurrence relations and tridiagonal trigonometric matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F06%3A00015769" target="_blank" >RIV/00216224:14310/06:00015769 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Trigonometric recurrence relations and tridiagonal trigonometric matrices
Original language description
It is shown that every tridiagonal symmetric matrix can be transformed by a special transformation into the so-called tridiagonal trigonometric matrix. The relationship of this transformation to 2 times 2 trigonometric symplectic system and to three-termtrigonometric recurrence relations is discussed as well
Czech name
Trigonometrické rekurentní relace a tridiagonaální terigonometrické matice
Czech description
Je ukázáno, že každou tridiagonální symetrickou matici jse možné převést pomocí specíální trenasormace ina tzv. trigonometrickou matici. Je studován vztah této transformace k 2 x 2 trigonometrickým symplektickým systémům a k trojčlenné trigonometrické rekurentní relaci.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F04%2F0580" target="_blank" >GA201/04/0580: Difference equations and dynamic equations on time scales</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Int. J. Difference Equ.
ISSN
0973-3590
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
1
Country of publishing house
IN - INDIA
Number of pages
11
Pages from-to
19-29
UT code for WoS article
—
EID of the result in the Scopus database
—