All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Synthetic dataset for compositional learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA1901VAS" target="_blank" >RIV/61988987:17610/18:A1901VAS - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1142/11069" target="_blank" >http://dx.doi.org/10.1142/11069</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/11069" target="_blank" >10.1142/11069</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Synthetic dataset for compositional learning

  • Original language description

    This contribution presents a framework for a generation of synthetic images. The framework is built on top of the Unreal Engine 4, a software kit capable of rendering realistic images. Besides image data, additional label information, such as depth, normal maps and object components masks, are generated. Hierarchical nature of generated labels corresponds to hierarchical representations which we want to be captured by the neural network. Such labels enable training of deep models in a compositional manner. This leads to the better understanding of the internal representations of the models and acceleration of the learning procedure. The framework allows users to render arbitrary scenes and objects according to their specific domain.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Data Science and Knowledge Engineering for Sensing Decision Support

  • ISBN

    9789813273221

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1440-1445

  • Publisher name

    World Scientific

  • Place of publication

    Singapur

  • Event location

    Belfast

  • Event date

    Aug 21, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article