Properties of invariant measures in dynamical systems with the shadowing propert
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA2202EP7" target="_blank" >RIV/61988987:17610/18:A2202EP7 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/properties-of-invariant-measures-in-dynamical-systems-with-the-shadowing-property/5C3CB849E07E5BD86FE5AE85714A575E#access-block" target="_blank" >https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/properties-of-invariant-measures-in-dynamical-systems-with-the-shadowing-property/5C3CB849E07E5BD86FE5AE85714A575E#access-block</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/etds.2016.125" target="_blank" >10.1017/etds.2016.125</a>
Alternative languages
Result language
angličtina
Original language name
Properties of invariant measures in dynamical systems with the shadowing propert
Original language description
For dynamical systems with the shadowing property, we provide a method of approximation of invariant measures by ergodic measures supported on odometers and their almost one-to-one extensions. For a topologically transitive system with the shadowing property, we show that ergodic measures supported on odometers are dense in the space of invariant measures, and then ergodic measures are generic in the space of invariant measures. We also show that for every and the collection of ergodic measures (supported on almost one-to-one extensions of odometers) with entropy between and is dense in the space of invariant measures with entropy at least . Moreover, if in addition the entropy function is upper semi-continuous, then, for every , ergodic measures with entropy are generic in the space of invariant measures with entropy at least .
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ERGOD THEOR DYN SYST
ISSN
0143-3857
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
28
Pages from-to
2257-2294
UT code for WoS article
000439984400011
EID of the result in the Scopus database
2-s2.0-85015150785