On d-approachability, entropy density and B-free shifts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00561667" target="_blank" >RIV/67985556:_____/23:00561667 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/on-bar-d-approachability-entropy-density-and-mathscr-b-free-shifts/F5D747D79D4C4ED5282AED0F63DDC8CA" target="_blank" >https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/on-bar-d-approachability-entropy-density-and-mathscr-b-free-shifts/F5D747D79D4C4ED5282AED0F63DDC8CA</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/etds.2021.167" target="_blank" >10.1017/etds.2021.167</a>
Alternative languages
Result language
angličtina
Original language name
On d-approachability, entropy density and B-free shifts
Original language description
We study approximation schemes for shift spaces over a finite alphabet using (pseudo)metrics connected to Ornstein's (d) over bar metric. This leads to a class of shift spaces we call (d) over bar -approachable. A shift space is (d) over bar -approachable when its canonical sequence of Markov approximations converges to it also in the (d) over bar sense. We give a topological characterization of chain-mixing (d) over bar -approachable shift spaces. As an application we provide a new criterion for entropy density of ergodic measures. Entropy density of a shift space means that every invariant measure mu of such a shift space is the weak* limit of a sequence mu(n) of ergodic measures with the corresponding sequence of entropies h(mu) converging to h(mu) . We prove ergodic measures are entropy-dense for every shift space that can be approximated in the (d) over bar pseudometric by a sequence of transitive sofic shifts. This criterion can be applied to many examples that were beyond the reach of previously known techniques including hereditary B-free shifts and some minimal or proximal systems. The class of symbolic dynamical systems covered by our results includes also shift spaces where entropy density was established previously using the (almost) specification property.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ergodic Theory and Dynamical Systems
ISSN
0143-3857
e-ISSN
1469-4417
Volume of the periodical
43
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
27
Pages from-to
943-970
UT code for WoS article
000755540400001
EID of the result in the Scopus database
2-s2.0-85124961285