Mixing properties in expanding Lorenz maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA20021YI" target="_blank" >RIV/61988987:17610/19:A20021YI - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.aim.2018.11.015" target="_blank" >https://doi.org/10.1016/j.aim.2018.11.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2018.11.015" target="_blank" >10.1016/j.aim.2018.11.015</a>
Alternative languages
Result language
angličtina
Original language name
Mixing properties in expanding Lorenz maps
Original language description
Let Tf : [0, 1] → [0, 1] be an expanding Lorenz map, this means Tfx := f(x) (mod 1) where f : [0, 1] → [0, 2] is a strictly increasing map satisfying inf f 0 > 1. Then Tf has two pieces of monotonicity. In this paper, suficient conditions when Tf is topologically mixing are provided. For the special case f(x) = βx + α with β ≥ √3 2 a full characterization of parameters (β, α) leading to mixing is given. Furthermore relations between renormalizability and Tf being locally eventually onto are considered, and some gaps in classical results on the dynamics of Lorenz maps are corrected.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ADV MATH
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
343
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
44
Pages from-to
712-755
UT code for WoS article
000457070500022
EID of the result in the Scopus database
2-s2.0-85058016494