All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mixing properties in expanding Lorenz maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA20021YI" target="_blank" >RIV/61988987:17610/19:A20021YI - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.aim.2018.11.015" target="_blank" >https://doi.org/10.1016/j.aim.2018.11.015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2018.11.015" target="_blank" >10.1016/j.aim.2018.11.015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mixing properties in expanding Lorenz maps

  • Original language description

    Let Tf : [0, 1] → [0, 1] be an expanding Lorenz map, this means Tfx := f(x) (mod 1) where f : [0, 1] → [0, 2] is a strictly increasing map satisfying inf f 0 > 1. Then Tf has two pieces of monotonicity. In this paper, suficient conditions when Tf is topologically mixing are provided. For the special case f(x) = βx + α with β ≥ √3 2 a full characterization of parameters (β, α) leading to mixing is given. Furthermore relations between renormalizability and Tf being locally eventually onto are considered, and some gaps in classical results on the dynamics of Lorenz maps are corrected.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ADV MATH

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    343

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    44

  • Pages from-to

    712-755

  • UT code for WoS article

    000457070500022

  • EID of the result in the Scopus database

    2-s2.0-85058016494