On α-limit sets in lorenz maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2202CDI" target="_blank" >RIV/61988987:17610/21:A2202CDI - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1099-4300/23/9/1153/pdf" target="_blank" >https://www.mdpi.com/1099-4300/23/9/1153/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e23091153" target="_blank" >10.3390/e23091153</a>
Alternative languages
Result language
angličtina
Original language name
On α-limit sets in lorenz maps
Original language description
The aim of this paper is to show that α-limit sets in Lorenz maps do not have to be completely invariant. This highlights unexpected dynamical behavior in these maps, showing gaps existing in the literature. Similar result is obtained for unimodal maps on [0, 1]. On the basis of provided examples, we also present how the performed study on the structure of α-limit sets is closely connected with the calculation of the topological entropy.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Entropy
ISSN
1099-4300
e-ISSN
1099-4300
Volume of the periodical
14
Issue of the periodical within the volume
23
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
—
UT code for WoS article
000699717100001
EID of the result in the Scopus database
2-s2.0-85114458084