All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On α-limit sets in lorenz maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2202CDI" target="_blank" >RIV/61988987:17610/21:A2202CDI - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1099-4300/23/9/1153/pdf" target="_blank" >https://www.mdpi.com/1099-4300/23/9/1153/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/e23091153" target="_blank" >10.3390/e23091153</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On α-limit sets in lorenz maps

  • Original language description

    The aim of this paper is to show that α-limit sets in Lorenz maps do not have to be completely invariant. This highlights unexpected dynamical behavior in these maps, showing gaps existing in the literature. Similar result is obtained for unimodal maps on [0, 1]. On the basis of provided examples, we also present how the performed study on the structure of α-limit sets is closely connected with the calculation of the topological entropy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Entropy

  • ISSN

    1099-4300

  • e-ISSN

    1099-4300

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    23

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000699717100001

  • EID of the result in the Scopus database

    2-s2.0-85114458084