All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Shadowing, asymptotic shadowing and s-limit shadowing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA20021YO" target="_blank" >RIV/61988987:17610/19:A20021YO - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4064/fm492-5-2018" target="_blank" >https://doi.org/10.4064/fm492-5-2018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/fm492-5-2018" target="_blank" >10.4064/fm492-5-2018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Shadowing, asymptotic shadowing and s-limit shadowing

  • Original language description

    We study three notions of shadowing: classical shadowing, limit (or asymptotic) shadowing, and s-limit shadowing. We show that classical and s-limit shadowing coincide for tent maps and, more generally, for piecewise linear interval maps with constant slopes, and are further equivalent to the linking property introduced by Chen in 1991. We also construct a system which exhibits shadowing but not limit shadowing, and we study how shadowing properties transfer to maximal transitive subsystems and inverse limits (sometimes called natural extensions). Where practicable, we show that our results are best possible by means of examples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FUND MATH

  • ISSN

    0016-2736

  • e-ISSN

  • Volume of the periodical

    244

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    PL - POLAND

  • Number of pages

    26

  • Pages from-to

    287-312

  • UT code for WoS article

    000454112000004

  • EID of the result in the Scopus database

    2-s2.0-85059977200