Continuous curves of nonmetric pseudo-arcs and semi-conjugacies to interval maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA2101JSO" target="_blank" >RIV/61988987:17610/20:A2101JSO - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.topol.2020.107309" target="_blank" >http://dx.doi.org/10.1016/j.topol.2020.107309</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2020.107309" target="_blank" >10.1016/j.topol.2020.107309</a>
Alternative languages
Result language
angličtina
Original language name
Continuous curves of nonmetric pseudo-arcs and semi-conjugacies to interval maps
Original language description
In 1985 M. Smith constructed a nonmetric pseudo-arc; i.e. a Hausdorff homogeneous, hereditary equivalent and hereditary indecomposable continuum. Taking advantage of a decomposition theorem of W. Lewis, he obtained it as a long inverse limit of metric pseudo-arcs with monotone bonding maps. Extending his approach, and the results of Lewis on lifting homeomorphisms, we construct a nonmetric pseudo -circle, and new examples of homogeneous one-dimensional continua; e.g. a circle and solenoids of nonmetric pseudo-arcs. Among many corollaries we also obtain an analogue of another theorem of Lewis from 1984: any interval map is semi-conjugate to a homeomorphism of the nonmetric pseudo-arc.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
TOPOL APPL
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
282
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
1-11
UT code for WoS article
000589892900008
EID of the result in the Scopus database
2-s2.0-85087694926