All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Continuous curves of nonmetric pseudo-arcs and semi-conjugacies to interval maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA2101JSO" target="_blank" >RIV/61988987:17610/20:A2101JSO - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.topol.2020.107309" target="_blank" >http://dx.doi.org/10.1016/j.topol.2020.107309</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2020.107309" target="_blank" >10.1016/j.topol.2020.107309</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Continuous curves of nonmetric pseudo-arcs and semi-conjugacies to interval maps

  • Original language description

    In 1985 M. Smith constructed a nonmetric pseudo-arc; i.e. a Hausdorff homogeneous, hereditary equivalent and hereditary indecomposable continuum. Taking advantage of a decomposition theorem of W. Lewis, he obtained it as a long inverse limit of metric pseudo-arcs with monotone bonding maps. Extending his approach, and the results of Lewis on lifting homeomorphisms, we construct a nonmetric pseudo -circle, and new examples of homogeneous one-dimensional continua; e.g. a circle and solenoids of nonmetric pseudo-arcs. Among many corollaries we also obtain an analogue of another theorem of Lewis from 1984: any interval map is semi-conjugate to a homeomorphism of the nonmetric pseudo-arc.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    TOPOL APPL

  • ISSN

    0166-8641

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    282

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000589892900008

  • EID of the result in the Scopus database

    2-s2.0-85087694926