All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Conjecture of Wood and Projective Homogeneity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA1901I37" target="_blank" >RIV/61988987:17610/18:A1901I37 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jmaa.2017.12.051" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2017.12.051</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2017.12.051" target="_blank" >10.1016/j.jmaa.2017.12.051</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Conjecture of Wood and Projective Homogeneity

  • Original language description

    In 2005 Kawamura and Rambla, independently, constructed ametric counterexample to Wood's Conjecture from 1982. We exhibit a newnonmetric counterexample of a spaceL?, such that C_0(L?,C) is almost transitive,and show that it is distinct from a nonmetric space whose existencefollows from the work of Greim and Rajagopalan in 1997. Up to ourknowledge, this is only the third known counterexample to Wood'sConjecture. We also show that, contrary to what was expected, if a onepointcompactification of a space X is R.H. Bing's pseudo-circle thenC_0(X,C) is not almost transitive, for a generic choice of points.Finally, we point out close relation of these results on Wood'sconjecture to a work of Irwin and Solecki on projective Fra¨?ss´e limitsand projective homogeneity of the pseudo-arc and, addressingtheir conjecture, we show that the pseudo-circle is not approximatelyprojectively homogeneous.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    J MATH ANAL APPL

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    461

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    15

  • Pages from-to

    1733-1747

  • UT code for WoS article

    000426334400038

  • EID of the result in the Scopus database

    2-s2.0-85039164503