MINIMAL NON-INVERTIBLE MAPS ON THE PSEUDO-CIRCLE
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2201VFZ" target="_blank" >RIV/61988987:17610/21:A2201VFZ - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10884-020-09877-w" target="_blank" >https://doi.org/10.1007/s10884-020-09877-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10884-020-09877-w" target="_blank" >10.1007/s10884-020-09877-w</a>
Alternative languages
Result language
angličtina
Original language name
MINIMAL NON-INVERTIBLE MAPS ON THE PSEUDO-CIRCLE
Original language description
In this article we show that R.H. Bing’s pseudo-circle admits a minimal non-invertible map. This resolves a conjecture raised by Bruin, Kolyada and Snoha in the negative. The main tool is a variant of the Denjoy–Rees technique, further developed by Béguin–Crovisier–Le Roux, combined with detailed study of the structure of the pseudo-circle. This is the first example of a planar 1-dimensional space that admits both minimal homeomorphisms and minimal noninvertible maps.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J DYN DIFFER EQU
ISSN
1040-7294
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
1897-1916
UT code for WoS article
000562680100002
EID of the result in the Scopus database
2-s2.0-85089857745