Geodesic mappings of semi-Riemannian manifolds with a degenerate metric
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73613297" target="_blank" >RIV/61989592:15310/22:73613297 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/10/1/154/htm" target="_blank" >https://www.mdpi.com/2227-7390/10/1/154/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math100101544" target="_blank" >10.3390/math100101544</a>
Alternative languages
Result language
angličtina
Original language name
Geodesic mappings of semi-Riemannian manifolds with a degenerate metric
Original language description
This article introduces the concept of geodesic mappings of manifolds with idempotent pseudo-connections. The basic equations of canonical geodesic mappings of manifolds with completely idempotent pseudo-connectivity and semi-Riemannian manifolds with a degenerate metric are obtained. It is proved that semi-Riemannian manifolds admitting concircular fields admit completely canonical geodesic mappings and form a closed class with respect to these mappings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
"154-1"-"154-11"
UT code for WoS article
000749824500001
EID of the result in the Scopus database
2-s2.0-85122309869