Connected neighborhoods in Cartesian products of solenoids.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA2101VCW" target="_blank" >RIV/61988987:17610/20:A2101VCW - isvavai.cz</a>
Result on the web
<a href="https://www.impan.pl/en/publishing-house/journals-and-series/fundamenta-mathematicae/all/248/3/113167/connected-neighborhoods-in-cartesian-products-of-solenoids" target="_blank" >https://www.impan.pl/en/publishing-house/journals-and-series/fundamenta-mathematicae/all/248/3/113167/connected-neighborhoods-in-cartesian-products-of-solenoids</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/fm678-3-2019" target="_blank" >10.4064/fm678-3-2019</a>
Alternative languages
Result language
angličtina
Original language name
Connected neighborhoods in Cartesian products of solenoids.
Original language description
Given a collection of pairwise relative prime integers greater than 1 we consider the product of correspondings solenoids. Answering a question by D. P. Bellamy and J. M. Lysko, in this paper we prove that if M is a subcontinuum of of the product suchthat all the coordinate projections of M are onto, then for each open subsetU around M, there exists an open connected subset V in U around M.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUND MATH
ISSN
0016-2736
e-ISSN
—
Volume of the periodical
248
Issue of the periodical within the volume
3
Country of publishing house
PL - POLAND
Number of pages
12
Pages from-to
309-320
UT code for WoS article
000561707800003
EID of the result in the Scopus database
2-s2.0-85083318117