All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Closure properties of lim⟶⁡C

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00557710" target="_blank" >RIV/67985840:_____/22:00557710 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/22:10453364

  • Result on the web

    <a href="https://doi.org/10.1016/j.jalgebra.2022.04.029" target="_blank" >https://doi.org/10.1016/j.jalgebra.2022.04.029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2022.04.029" target="_blank" >10.1016/j.jalgebra.2022.04.029</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Closure properties of lim⟶⁡C

  • Original language description

    Let C be a class of modules and L = lim C the class of all direct limits of modules from C. The class L is well understood when C consists of finitely presented modules: L then enjoys various closure properties. We study the closure properties of L in the general case when C is arbitrary class of modules. Then we concentrate on two important particular cases, when C = add M and C = Add M, for an arbitrary module M. In the first case, we prove that L is the class of all tensor products of L with flat modules over the endomorphism ring of M. In the second case, we show that L is the class of all contratensor products of M, over the endomorphism ring of M endowed with the finite topology, with contramodules that can be obtained as direct limits of projective contramodules. For modules M from various classes of modules (e.g., for pure projective modules), we prove that lim add M = lim Add M, but the general case remains open.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

    1090-266X

  • Volume of the periodical

    606

  • Issue of the periodical within the volume

    September 15

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    74

  • Pages from-to

    30-103

  • UT code for WoS article

    000831078600003

  • EID of the result in the Scopus database

    2-s2.0-85131374268