All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Planar embeddings of chainable continua

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21021V4" target="_blank" >RIV/61988987:17610/20:A21021V4 - isvavai.cz</a>

  • Result on the web

    <a href="http://topology.auburn.edu/tp/reprints/v56/tp56016p1.pdf" target="_blank" >http://topology.auburn.edu/tp/reprints/v56/tp56016p1.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Planar embeddings of chainable continua

  • Original language description

    We prove that for a chainable continuum where every point has only finitely many coordinate projections contained in a zigzag there exists a planar embedding such that this point is accessible. This partially answers a question of Nadler and Quinn from 1972. We prove that every nondegenerate indecomposable chainable continuum can be embedded in the plane in uncountably many ways that are not strongly equivalent.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Topology Proceedings

  • ISSN

    0146-4124

  • e-ISSN

    2331-1290

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    33

  • Pages from-to

    263-296

  • UT code for WoS article

  • EID of the result in the Scopus database