A continuum-chainable continuum which can not be mapped onto an arcwise connected continuum by a monotone epsilon mapping
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10127950" target="_blank" >RIV/00216208:11320/13:10127950 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A continuum-chainable continuum which can not be mapped onto an arcwise connected continuum by a monotone epsilon mapping
Original language description
A continuum is called continuum-chainable provided for any pair of points and positive epsilon there exists a finite chain of subcontinua of diameter less than epsilon starting at one point and ending in the other. We present an example of a continuum which is continuum-chainable and which can not be mapped onto an arcwise connected continuum by a monotone epsilon mapping. This answers a question posed by W. J. Charatonik.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Glasnik Matematicki
ISSN
0017-095X
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
1
Country of publishing house
CR - COSTA RICA
Number of pages
6
Pages from-to
167-172
UT code for WoS article
000319866600013
EID of the result in the Scopus database
—