All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Ordinal Sums of T-norms and T-conorms on Bounded Posets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21024VC" target="_blank" >RIV/61988987:17610/20:A21024VC - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/20:00114626

  • Result on the web

    <a href="https://ieeexplore.ieee.org/abstract/document/9177618" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9177618</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/FUZZ48607.2020.9177618" target="_blank" >10.1109/FUZZ48607.2020.9177618</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Ordinal Sums of T-norms and T-conorms on Bounded Posets

  • Original language description

    This paper continues and generalizes the line of research on ordinal sum of t-norms and t-conorms on bounded lattices. We introduce a new ordinal sum construction on bounded posets based on interior and closure operators. Our proposed method provides a simple tool to introduce new classes of t-norms and t-conorms. Several necessary and sufficient conditions are presented for ensuring whether our generalized ordinal sum on bounded posets of arbitrary t-norms is, in fact, a t-norm. We show that in this general setting the existence of our ordinal sum for t-norms requires that the respective interior operators are t-norm preserving.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

  • ISBN

    978-172816932-3

  • ISSN

    1098-7584

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    1-8

  • Publisher name

    IEEE

  • Place of publication

    Glasgow

  • Event location

    Glasgow

  • Event date

    Jul 19, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article