On ordinal sums of partially ordered monoids: A unified approach to ordinal sum constructions of t-norms, t-conorms and uninorms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA23025DH" target="_blank" >RIV/61988987:17610/22:A23025DH - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011421001317" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011421001317</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2021.04.008" target="_blank" >10.1016/j.fss.2021.04.008</a>
Alternative languages
Result language
angličtina
Original language name
On ordinal sums of partially ordered monoids: A unified approach to ordinal sum constructions of t-norms, t-conorms and uninorms
Original language description
This paper introduces two fundamental types of ordinal sum constructions for po-monoids that are determined by two specific partial orderings on the disjoint union of the po-monoids. Both ordinal sums of po-monoids are generalized with the help of operators on posets, which combine, in some sense, the properties of interior and closure operators on posets. The proposed approach provides a unified view on several known constructions of ordinal sums of t-norms and t-conorms on posets (lattices) and introduces generalized ordinal sums of uninorms on posets (lattices).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy sets and systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
5. října 2022
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
22
Pages from-to
4-25
UT code for WoS article
000862831200002
EID of the result in the Scopus database
2-s2.0-85104931723