Classical approximation for fuzzy Fredholm integral equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2201ZWT" target="_blank" >RIV/61988987:17610/21:A2201ZWT - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011419300168" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011419300168</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2020.03.023" target="_blank" >10.1016/j.fss.2020.03.023</a>
Alternative languages
Result language
angličtina
Original language name
Classical approximation for fuzzy Fredholm integral equation
Original language description
We propose to use Chebyshev polynomials to find numerical solutions to fuzzy Fredholm integral equations of the second kind. The method uses the Clenshaw-Curtis representation and transforms a fuzzy Fredholm integral equation to the system of algebraic equations. A solution to this algebraic system gives the approximate (functional) solution to the original problem. We discuss the existence and uniqueness of a solution. The proposed method is illustrated by numerical examples, which confirms the theoretical convergence estimate.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-06915S" target="_blank" >GA18-06915S: New approaches to aggregation operators in analysis and processing of data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
404
Issue of the periodical within the volume
1.2.2021
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
19
Pages from-to
159-177
UT code for WoS article
000589573200008
EID of the result in the Scopus database
2-s2.0-85083335949