All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Features as Keypoints and How Fuzzy Transforms Retrieve Them

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2202APN" target="_blank" >RIV/61988987:17610/21:A2202APN - isvavai.cz</a>

  • Result on the web

    <a href="https://www.springerprofessional.de/en/features-as-keypoints-and-how-fuzzy-transforms-retrieve-them/19587028?searchResult=1.Perfilieva&searchBackButton=true" target="_blank" >https://www.springerprofessional.de/en/features-as-keypoints-and-how-fuzzy-transforms-retrieve-them/19587028?searchResult=1.Perfilieva&searchBackButton=true</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Features as Keypoints and How Fuzzy Transforms Retrieve Them

  • Original language description

    We are focused on a new fast and robust algorithm of image/signal feature extraction in the form of representative keypoints. We analyze various multi-scale representations of a one-dimensional signal in spaces with a closeness relation determined by a symmetric and positive semi-definite kernel. We show that kernels arising from generating functions of fuzzy partitions can be used in a scale space representation of a one-dimensional signal. We show that the reconstruction from the proposed multi-scale representations is of better quality than the reconstruction from MLP with almost double the number of neurons in 4 hidden layers. Finally, we propose a new algorithm of keypoints localization and description and test it on financial time series with high volatility.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Computational Intelligence

  • ISBN

    978-3-030-85098-2

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    14-27

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Virtual Event

  • Event date

    Jun 16, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000696688800002