A Cantor dynamical system is slow if and only if all its finite orbits are attracting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302I3C" target="_blank" >RIV/61988987:17610/22:A2302I3C - isvavai.cz</a>
Result on the web
<a href="https://www.aimsciences.org/article/doi/10.3934/dcds.2022007" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/dcds.2022007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcds.2022007" target="_blank" >10.3934/dcds.2022007</a>
Alternative languages
Result language
angličtina
Original language name
A Cantor dynamical system is slow if and only if all its finite orbits are attracting
Original language description
In this paper we completely solve the problem of when a Cantor dynamical system (X, f) can be embedded in R with vanishing derivative. For this purpose we construct a refining sequence of marked clopen partitions of X which is adapted to a dynamical system of this kind. It turns out that there is a huge class of such systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE CONT DYN S
ISSN
1078-0947
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
3039-3064
UT code for WoS article
000748713600001
EID of the result in the Scopus database
2-s2.0-85131254310