All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On conjugacy of natural extensions of one-dimensional maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402CEF" target="_blank" >RIV/61988987:17610/23:A2402CEF - isvavai.cz</a>

  • Result on the web

    <a href="https://www.doi.org/10.1017/etds.2022.62" target="_blank" >https://www.doi.org/10.1017/etds.2022.62</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/etds.2022.62" target="_blank" >10.1017/etds.2022.62</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On conjugacy of natural extensions of one-dimensional maps

  • Original language description

    We prove that for any nondegenerate dendrite D there exist topologically mixing maps F:D→D and f:[0,1]→[0,1], such that the natural extensions (aka shift homeomorphisms) σF and σf are conjugate, and consequently the corresponding inverse limits are homeomorphic. Moreover, the map f does not depend on the dendrite D, and can be selected so that the inverse limit lim←−−(D,F) is homeomorphic to the pseudo-arc. The result extends to any finite number of dendrites. Our work is motivated by, but independent of, the recent result of the first and third author on conjugation of Lozi and Hénon maps to natural extensions of dendrite maps.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ERGOD THEOR DYN SYST

  • ISSN

    0143-3857

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    23

  • Pages from-to

    2915-2937

  • UT code for WoS article

    000855573200001

  • EID of the result in the Scopus database