On the monotonicity of functions constructed via the ordinal sum construction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402GMH" target="_blank" >RIV/61988987:17610/23:A2402GMH - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011423000209?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011423000209?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2023.01.008" target="_blank" >10.1016/j.fss.2023.01.008</a>
Alternative languages
Result language
angličtina
Original language name
On the monotonicity of functions constructed via the ordinal sum construction
Original language description
The monotonicity of functions defined on the unit interval, constructed via (z)-ordinal sum is discussed. In Part I of this two-part paper we characterize all non-decreasing functions defined on the unit interval which are constructed by a non-trivial ordinal sum of semigroups. We also give necessary and sufficient conditions for a function constructed via ordinal sum to be monotone. In Part II we describe the structure of a monotone function defined on the unit interval which is constructed via z-ordinal sum construction with respect to a finite branching set and we give necessary and sufficient conditions for a function constructed via z-ordinal sum to be monotone in the case when intermediate condition is fulfilled. The case when intermediate condition is not fulfilled is discussed as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
Leden
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
—
UT code for WoS article
001012792300001
EID of the result in the Scopus database
2-s2.0-85147290709