On the monotonicity of functions constructed via z-ordinal sum construction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402GMJ" target="_blank" >RIV/61988987:17610/23:A2402GMJ - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011423000180?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011423000180?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2023.01.006" target="_blank" >10.1016/j.fss.2023.01.006</a>
Alternative languages
Result language
angličtina
Original language name
On the monotonicity of functions constructed via z-ordinal sum construction
Original language description
This is the second part of a two-part paper which discusses monotonicity of functions defined on the unit interval, constructed via (z)-ordinal. In Part I we characterized all non-decreasing functions defined on the unit interval which are constructed by a non-trivial ordinal sum of semigroups and gave necessary and sufficient conditions for a function constructed via ordinal sum to be monotone. In the present Part II we describe the structure of a monotone function defined on the unit interval which is constructed via z-ordinal sum construction with respect to a finite branching set and we give necessary and sufficient conditions for a function constructed via z-ordinal sum to be monotone in the case when the intermediate condition is fulfilled. The case when the intermediate condition is not fulfilled is discussed as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
Leden
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
26
Pages from-to
—
UT code for WoS article
001012807900001
EID of the result in the Scopus database
2-s2.0-85147312869