Verification of validity of syllogisms with intermediate quantifiers is equivalent with checking Peterson's rules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402I3M" target="_blank" >RIV/61988987:17610/23:A2402I3M - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X23001251?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X23001251?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2023.108994" target="_blank" >10.1016/j.ijar.2023.108994</a>
Alternative languages
Result language
angličtina
Original language name
Verification of validity of syllogisms with intermediate quantifiers is equivalent with checking Peterson's rules
Original language description
This paper is a continuation of the previous paper in which we analyzed six Peterson's rules for checking validity of Aristotle classical syllogisms and also their extension for syllogisms with intermediate quantifiers. We formalized the rules and proved that only four rules are sufficient. In this paper we return to this topic and prove that a syllogism with intermediate quantifiers is valid iff it satisfies four (and consequently all six) Peterson's rules.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Aproximate Reasoning
ISSN
0888-613X
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
161
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
—
UT code for WoS article
001059370300001
EID of the result in the Scopus database
2-s2.0-85167603682