A Note on Homeo-Product-Minimality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA2502I1F" target="_blank" >RIV/61988987:17610/24:A2502I1F - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s12346-024-00992-3" target="_blank" >https://link.springer.com/article/10.1007/s12346-024-00992-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12346-024-00992-3" target="_blank" >10.1007/s12346-024-00992-3</a>
Alternative languages
Result language
angličtina
Original language name
A Note on Homeo-Product-Minimality
Original language description
A compact space Y is called homeo-product-minimal if given any minimal system (X,T), it admits a homeomorphism S : Y → Y, such that the product system (X × Y, T × S) is minimal. We show that a large class of cofrontiers is homeo-product-minimal. This class contains R. H. Bing’s pseudo- circle, answering a question of Dirbák, Snoha and Špitalský from [Minimal direct products, Trans. Amer. Math. Soc. 375 (2022)].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Qualitative Theory of Dynamical Systems
ISSN
1575-5460
e-ISSN
1662-3592
Volume of the periodical
—
Issue of the periodical within the volume
140
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
1-13
UT code for WoS article
001185906700001
EID of the result in the Scopus database
2-s2.0-85188068905