All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Representation of non-commutative, idempotent, associative functions by pair-orders

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA2502LNU" target="_blank" >RIV/61988987:17610/24:A2502LNU - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0165011423004049" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0165011423004049</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fss.2023.108759" target="_blank" >10.1016/j.fss.2023.108759</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Representation of non-commutative, idempotent, associative functions by pair-orders

  • Original language description

    The non-commutative, idempotent, associative functions are studied. It is well known that each commutative, idempotent (internal), associative function can be represented by a partial (linear) order. In this work it is shown that each non-commutative, idempotent (internal), associative function can be represented by a (linear) pair-order. Moreover, each internal, associative function can be expressed as an ordinal sum of trivial semigroups and semigroups, where the corresponding semigroup operation is the projection to one of the coordinates. Vice versa, each linear pair-order induces a unique internal, associative function and a condition under which each (non-linear) pair-order defined on a chain induces a unique monotone, idempotent, associative function is also introduced. Several examples of non-commutative, idempotent, associative functions and related pair-orders are shown.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fuzzy Sets and Systems

  • ISSN

    0165-0114

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    January 2024

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    001098533300001

  • EID of the result in the Scopus database

    2-s2.0-85174579215