Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F18%3A10239484" target="_blank" >RIV/61989100:27120/18:10239484 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/18:10239484 RIV/61989100:27730/18:10239484 RIV/61989100:27740/18:10239484
Result on the web
<a href="https://link.springer.com/article/10.1007/s00211-017-0925-3" target="_blank" >https://link.springer.com/article/10.1007/s00211-017-0925-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-017-0925-3" target="_blank" >10.1007/s00211-017-0925-3</a>
Alternative languages
Result language
angličtina
Original language name
Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem
Original language description
In this paper, we develop adaptive inexact versions of iterative algorithms applied to finite element discretizations of the linear Stokes problem. We base our developments on an equilibrated stress a posteriori error estimate distinguishing the different error components, namely the discretization error component, the (inner) algebraic solver error component, and possibly the outer algebraic solver error component for algorithms of the Uzawa type. We prove that our estimate gives a guaranteed upper bound on the total error, as well as a polynomial-degree-robust local efficiency, and this on each step of the employed iterative algorithm. Our adaptive algorithms stop the iterations when the corresponding error components do not have a significant influence on the total error. The developed framework covers all standard conforming and conforming stabilized finite element methods on simplicial and rectangular parallelepipeds meshes in two or three space dimensions and an arbitrary algebraic solver. Implementation into the FreeFem++ programming language is invoked and numerical examples showcase the performance of our a posteriori estimates and of the proposed adaptive strategies. As example, we choose here the unpreconditioned and preconditioned Uzawa algorithm and the preconditioned minimum residual algorithm, in combination with the Taylor-Hood discretization. (C) 2017 Springer-Verlag GmbH Deutschland
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerische Mathematik
ISSN
0029-599X
e-ISSN
—
Volume of the periodical
134
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
39
Pages from-to
1-39
UT code for WoS article
000428049800008
EID of the result in the Scopus database
2-s2.0-85035335409