All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F18%3A10239484" target="_blank" >RIV/61989100:27120/18:10239484 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27240/18:10239484 RIV/61989100:27730/18:10239484 RIV/61989100:27740/18:10239484

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00211-017-0925-3" target="_blank" >https://link.springer.com/article/10.1007/s00211-017-0925-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00211-017-0925-3" target="_blank" >10.1007/s00211-017-0925-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem

  • Original language description

    In this paper, we develop adaptive inexact versions of iterative algorithms applied to finite element discretizations of the linear Stokes problem. We base our developments on an equilibrated stress a posteriori error estimate distinguishing the different error components, namely the discretization error component, the (inner) algebraic solver error component, and possibly the outer algebraic solver error component for algorithms of the Uzawa type. We prove that our estimate gives a guaranteed upper bound on the total error, as well as a polynomial-degree-robust local efficiency, and this on each step of the employed iterative algorithm. Our adaptive algorithms stop the iterations when the corresponding error components do not have a significant influence on the total error. The developed framework covers all standard conforming and conforming stabilized finite element methods on simplicial and rectangular parallelepipeds meshes in two or three space dimensions and an arbitrary algebraic solver. Implementation into the FreeFem++ programming language is invoked and numerical examples showcase the performance of our a posteriori estimates and of the proposed adaptive strategies. As example, we choose here the unpreconditioned and preconditioned Uzawa algorithm and the preconditioned minimum residual algorithm, in combination with the Taylor-Hood discretization. (C) 2017 Springer-Verlag GmbH Deutschland

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Numerische Mathematik

  • ISSN

    0029-599X

  • e-ISSN

  • Volume of the periodical

    134

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    39

  • Pages from-to

    1-39

  • UT code for WoS article

    000428049800008

  • EID of the result in the Scopus database

    2-s2.0-85035335409