All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00548860" target="_blank" >RIV/67985840:_____/21:00548860 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1137/20M1349503" target="_blank" >https://doi.org/10.1137/20M1349503</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/20M1349503" target="_blank" >10.1137/20M1349503</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps

  • Original language description

    We develop a multigrid solver steered by an a posteriori estimator of the algebraic error. We adopt the context of a second-order elliptic diffusion problem discretized by conforming finite elements of arbitrary polynomial degree p >= 1. Our solver employs zero pre- and one postsmoothing by the overlapping Schwarz (block-Jacobi) method and features an optimal choice of the step-sizes in the smoothing correction on each level by line search. This leads to a simple Pythagorean formula of the algebraic error in the next step in terms of the current error and levelwise and patchwise error reductions. We show the following two results and their equivalence: the solver contracts the algebraic error independently of the polynomial degree p, and the estimator represents a two-sided p-robust bound on the algebraic error.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Scientific Computing

  • ISSN

    1064-8275

  • e-ISSN

    1095-7197

  • Volume of the periodical

    43

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

    "S117"-"S145"

  • UT code for WoS article

    000712863700006

  • EID of the result in the Scopus database

    2-s2.0-85103871828