All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Numerical realization of elastoplastic one-dimensional problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F19%3A10242718" target="_blank" >RIV/61989100:27120/19:10242718 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27240/19:10242718 RIV/61989100:27730/19:10242718

  • Result on the web

    <a href="https://aip.scitation.org/doi/abs/10.1063/1.5114324" target="_blank" >https://aip.scitation.org/doi/abs/10.1063/1.5114324</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5114324" target="_blank" >10.1063/1.5114324</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Numerical realization of elastoplastic one-dimensional problems

  • Original language description

    We propose an algorithm for efficient implementation of elastoplastic problems with hardening for one-dimensional problem. We consider an associated elastoplastic model with the von Mises plastic criterion and the linear isotropic hardening law. This model is discretized by the implicit Euler method in time and the corresponding one time step elastoplastic problem by the finite element method in space. The semismooth Newton method is applied to solve this nonsmooth nonlinear system. Our codes are implemented in MATLAB, and they are vectorized and available for download. (C) 2019 Author(s).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LO1404" target="_blank" >LO1404: Sustainable Development of Center ENET</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings. Volume 2116

  • ISBN

    978-0-7354-1854-7

  • ISSN

    0094-243X

  • e-ISSN

    1551-7616

  • Number of pages

    4

  • Pages from-to

    4

  • Publisher name

    American Institute of Physics

  • Place of publication

    Melville

  • Event location

    Rhodos

  • Event date

    Sep 13, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000521108600315