The Dual Formulation of Discretized Beam Bending Problem with Sliding and Swivel Friction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F22%3A10250374" target="_blank" >RIV/61989100:27120/22:10250374 - isvavai.cz</a>
Result on the web
<a href="https://aip.scitation.org/doi/abs/10.1063/5.0081377" target="_blank" >https://aip.scitation.org/doi/abs/10.1063/5.0081377</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0081377" target="_blank" >10.1063/5.0081377</a>
Alternative languages
Result language
angličtina
Original language name
The Dual Formulation of Discretized Beam Bending Problem with Sliding and Swivel Friction
Original language description
The algorithm for numerical solution of the beam bending problem with given friction is the subject of this article. The objective function of corresponding optimization problem for finding the coefficients in the finite element basis combines quadratic function and additional non-differentiable part with absolute values representing the infuence of considered friction. From the algorithmic point of view, the direct solution of such a problem always causes the difficulties; the usual approaches of solution includes the artificial regularization or introduction of additional new variables. This paper presents the alternative way - the derivation of the so-called dual problem, where the unknowns are the Lagrange multipliers which correspond to the friction. This equivalent problem is a standard strictly convex quadratic programming problem with the feasible set defined by box constraints. The applicability of the approach is demonstrated by the results of our implementation in Matlab environment.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings. Volume 2425
ISBN
978-0-7354-4182-8
ISSN
0094-243X
e-ISSN
1551-7616
Number of pages
4
Pages from-to
"neuvedeno"
Publisher name
AIP Publishing
Place of publication
Melville
Event location
Rhodos
Event date
Sep 17, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—