Dynamical properties of a nonautonomous double pendulum model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F18%3A10239912" target="_blank" >RIV/61989100:27230/18:10239912 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/18:10239912 RIV/61989100:27740/18:10239912
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/mma.4650" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mma.4650</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.4650" target="_blank" >10.1002/mma.4650</a>
Alternative languages
Result language
angličtina
Original language name
Dynamical properties of a nonautonomous double pendulum model
Original language description
This researchwasmotivated by a real technological problem of vibrations of bodies hanging on chains or ropes in tubes or spaces limited bywalls or other bodies. The studied system has two degrees of freedom. It is formed by two pendulums moving between two walls. Its movement is governed by a set of nonlinear ordinary differential equations. The results of the simulations shown that the system exhibits regular and chaotic movement. The simulations were performed for 3 excitation amplitudes and the range of the excitation frequencies between 1 and 30 rad s(-1). The subject of the investigations was the determination of the character of the pendulums' motions and identification of their collisions with the sided walls.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
17
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
7106-7114
UT code for WoS article
000452611200001
EID of the result in the Scopus database
—