All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Measure of similarity between gmms by embedding of the parameter space that preserves kl divergence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F21%3A10247457" target="_blank" >RIV/61989100:27230/21:10247457 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000650558100001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000650558100001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math9090957" target="_blank" >10.3390/math9090957</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Measure of similarity between gmms by embedding of the parameter space that preserves kl divergence

  • Original language description

    In this work, we deliver a novel measure of similarity between Gaussian mixture models (GMMs) by neighborhood preserving embedding (NPE) of the parameter space, that projects components of GMMs, which by our assumption lie close to lower dimensional manifold. By doing so, we obtain a transformation from the original high-dimensional parameter space, into a much lower-dimensional resulting parameter space. Therefore, resolving the distance between two GMMs is reduced to (taking the account of the corresponding weights) calculating the distance between sets of lower-dimensional Euclidean vectors. Much better trade-off between the recognition accuracy and the computational complexity is achieved in comparison to measures utilizing distances between Gaussian components evaluated in the original parameter space. The proposed measure is much more efficient in machine learning tasks that operate on large data sets, as in such tasks, the required number of overall Gaussian components is always large. Artificial, as well as real-world experiments are conducted, showing much better trade-off between recognition accuracy and computational complexity of the proposed measure, in comparison to all baseline measures of similarity between GMMs tested in this paper. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

  • UT code for WoS article

    000650558100001

  • EID of the result in the Scopus database

    2-s2.0-85105307928